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Introduction 

• Some inferential problems require non-
classical approaches; e.g. 
– Heterogeneous variances and covariances across 

environments. 

– Different distributional forms (e.g. heavy-tailed or 
mixtures for residual/random effects). 

– High dimensional variable selection models 

• Hierarchical Bayesian modeling provides some 
flexibility for such problems. 
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Heterogeneous variance models 
(Kizilkaya and Tempelman, 2005) 

• Consider a study 
involving different 
subclasses (e.g. herds). 
– Mean responses are 

different. 

– But suppose residual 
variances are different 
too. 

• Let’s discuss in context 
of LMM (linear mixed 
model) 

3 



Applied Bayesian Inference, KSU, April 29, 2012 

§ / 

Recall linear mixed model 

• Given: 

 

 

       has a certain “heteroskedastic” specification. 

 

 

•       determines the nature of heterogeneous 
residual variances 
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Modeling Heterogeneous Variances 

• Suppose 

 

 

 

 
– with         as a “fixed” intercept residual variance 

– gk > 0 kth fixed scaling effect. 

– vl > 0 lth random scaling effect. 
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Subjective and Subjective Priors 
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Remaining priors 

• “Classical” random effects 

 

• “Classical” fixed effects 

 

• “Classical” random effects VC 

 

• Hyperparameter (Albert, 1988) 
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SAS PROC MCMC doesn’t seem to 
handle this…prior can’t be written 
as function of corresponding 
parameter 7 
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What was the last prior again??? 
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Different diffuse  priors can have different impacts on 
posterior inferences!...if data info is poor 

Rosa et al. (2004) 
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Joint Posterior Density 

• LMM: 

 

 

 

 

 

 

       

2

1 1

2

2 ( ) ( | )

|

| , , ,

, , , |

(

,

)

,

,

,

y β u γ

β u γ v φ y

β u φφv

s

e v

e e

t

k l

k l

e

e p

p

p

p p

p

p

p

v

p

g 









 



  
  
  
 

9 



Applied Bayesian Inference, KSU, April 29, 2012 

§ / 

Details on FCD 

• All provided by Kizilkaya and Tempelman (2005) 

– All are recognizeable except for  v:  

 

 

 

 

– Use Metropolis-Hastings random walk on                      
using normal as proposal density. 

• For MH, generally a good idea to transform parameters so 
that parameter space is entire real line…but don’t forget to 
include Jacobian of transform. 
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